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Digital twin applications in urban logistics: an overview
Abdo Abouelrous, Laurens Bliek and Yingqian Zhang

Department of Information Systems, Faculty of Industrial Engineering and Innovation Sciences, Technical 
University Eindhoven, Eindhoven, The Netherlands

ABSTRACT
Urban traffic attributed to commercial and industrial transportation is 
observed to largely affect living standards in cities due to external 
factors like pollution and congestion. To counter this, smart cities 
deploy technologies such as digital twins (DT)s to achieve sustainabil-
ity. Research suggests that DTs can be beneficial in optimizing the 
physical systems they are linked with. The concept has been exten-
sively studied in many technology-driven industries like manufactur-
ing. However, little work has been done with regards to their 
application in urban logistics. In this paper, we seek to provide 
a framework by which DTs could be easily adapted to urban logistics 
applications. To do this, we survey previous research on DT applications 
in urban logistics as we found that a holistic overview is lacking. Using 
this knowledge in combination with the identification of key factors in 
urban logistics, we produce a conceptual model for the general design 
of an urban logistics DT through a knowledge graph. We provide an 
illustration on how the conceptual model can be used in solving 
a relevant problem and showcase the integration of relevant DDO 
methods. We finish off with a discussion on research opportunities 
and challenges based on previous research and our practical 
experience.
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1. Introduction

Urban logisticshas been growing rapidly in recent years due to rising consumer demand and 
online shopping, among other trends relating to population growth and urbanization 
(Savelsbergh & Van Woensel, 2016). As a result, operational planning and policy-making in 
urban logistics has become increasingly complex. The associated challenges require smart 
cities to develop technologies that can assist with solving problems in urban logistics 
Büyüközkan and Ilcak (2021)).

Such technologies include Artificial Intelligence (AI), which has managed to acquire 
significant interest with its promising capabilities. Specifically, AI has witnessed many 
industrial applications in urban logistics to deal with real-life planning challenges as 
discussed in Jucha (2021), Sonneberg et al. (2019) and Shi et al. (2019).
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Among the various AI-driven technologies presented to tackle urban logistics problems, 
we are particularly interested in one because of its holistic approach in combining knowl-
edge from different quantitative fields such as machine learning and mathematical opti-
mization to model and optimize the operational environment through continuous data 
exchange with it. We refer to this as the Digital Twin (DT).

Despite the DT term dating back almost two decades, it still lacks a common definition 
across different industries (Marcucci et al., 2020). In particular, the definition of a DT is 
often determined by the application context (Semeraro et al., 2021). However, we believe 
that having a common cross-industry definition is crucial to launch any research 
initiative on DTs in a new field such as urban logistics to help specify its functionalities 
and technical requirements.

For the large part, DT applications have largely been manufacturing-based as in Rosen 
et al. (2015) and Tao et al. (2019). There has been very limited focus on the area of 
logistics as Haße et al. (2019) mentions, despite its importance and emphasis on how it 
could benefit from Big Data analytics (Pan et al., 2021). This benefit only grows with time 
as cities are becoming increasingly smarter and collect data from a multitude of sources 
(White et al., 2021). By using this data, DTs could be used to improve the quality of life, 
mobility and services of the inhabitants of a city (Botn-Sanabria et al., 2022)).

To emphasize the difference in setting up an urban logistics DT compared to 
a ‘factory-floor’ one, we consider the associated design and deployment phases. For 
instance, a manufacturing DT may be subjected to semi-physical simulations as part of 
a validation process in the system design phase (Leng, Wang, et al., 2021)), (Leng, Zhou, 
et al., 2021). This is not possible in the urban setting where semi-physical tests come at 
a great cost and risk, and therefore, model validation and training have to occur ‘offline’.

In order to define a framework for building urban logistics DTs, we first have to 
identify the most relevant aspects in urban logistics to DTs. The human aspect plays an 
important role in the urban environment as determined by the stakeholders and their 
interactions (Lagorio et al., 2017). This aspect is less significant in other domains such as 
manufacturing where robotic equipment operating in an exclusive environment guar-
antee some consistency in implementation and decision-making. Urban environments, 
on the other hand, are seen to be more complex (Rydin et al., 2012).

Our objective is to provide a characterization of urban logistics DT by providing 
definition, technical anatomy, functionalities and set-up methodology. To the best of our 
knowledge, there is no existing research that contains a holistic overview of all four topics.

Additionally, the integration of Data-Driven Optimization (DDO) methods has rendered 
an obstacle in the development of DTs. DDO methods have been extensively developed and 
can leverage the computational power of DTs to significantly improve decision-making. For 
urban logistics, this has been manifested in numerous use cases like Gutierrez-Franco et al. 
(2021), Zdolsek Draksler et al. (2023), Miao and Lan (2021) and Shen et al. (2022). For the 
large part, the focus has been on software integration. The absence of clear guidelines on DDO 
integration limits the margin by which we can benefit from DTs (Teng et al., 2021).

In response to the aforementioned problems, we strive to deliver the following 
contributions through this study: [noitemsep]

(1) Identify the most relevant factors in urban logistics operations for DT 
development.
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(2) Summarize previous findings from literature on DTs in urban logistics in terms of 
definition, technical anatomy, functionalities and set-up methodology.

(3) Provide a conceptual model of urban logistics DTs in terms of a knowledge graph.
(4) Provide a technical illustration on how our conceptual model could be leveraged 

to solve a common urban logistics problem and the integration of DDO methods.
(5) Specify potential opportunities and challenges in future research.

That said, the rest of this article is organized as follows. Section 2 describes our search 
procedure in academic literature. Section 3 provides the dynamic characterization of urban 
logistics (Contribution 1) in 3.1 and the detailed survey of DT applications in urban logistics in 
3.2 (Contribution 2). Section 4 proposes the conceptual framework (Contribution 3). 
Section 5 offers the technical illustration (Contribution 4). Section 6 discusses the results of 
this study along with research opportunities and challenges. (Contribution 5). Section 7 
summarizes the conclusions of this study.

2. Literature review

A systematic and thorough research for literature was conducted. Before we proceed with 
describing it, we had to specify a definite research direction by which we are able to formulate 
research queries. Specifically, we opted to look for Digital Twin applications that are exclusive 
to city logistics and its sub categories like last-mile deliveries. We ignored applications from 
other fields such as manufacturing or other transportation and/or logistics areas such as cross- 
border transportation or warehousing where the environments characterizing the DT are 
significantly different from those in cities, and as such have little theoretical insight to offer.

The major challenge that we encountered is the limited availability of literature. To 
that end, we had to employ additional measures to cultivate more literature that, 
although not exclusive to urban logistics, contains elements that relate sufficiently to 
the topic. In spite of the limited availability, the literature we found embodies a great deal 
of information as each paper discusses a somewhat distinct aspect of urban logistics DTs 
in a great level of detail, allowing us to construct a rather informative overview.

Our search procedure largely resembles that of Pan et al. (2021). We define four search 
criteria: 

● (C1) Time period: The time-frame was rather unrestricted in our search. We are 
aware that this is a relatively new topic where most work has been done in recent 
years, as will be shown below. Furthermore, we avoided any restrictions on the 
search due to the limited availability of literature on our topic.

● (C2) Sources: We were open to all available academic sources. We disregarded 
working papers. Articles published in non-academic venues were also discarded.

● (C3) Language: only papers written in English are considered.
● (C4) Key words: Search queries were coupled with the term “Digital Twin”. We used 

synonyms of urban logistics such as city logistics and last-mile deliveries. We also 
made use of the term supply chain as an alternative to logistics. We avoided queries 
with the term logistics and/or supply chain alone as this produces ample amount of 
literature that does not directly deal with the our definition of urban logistics (see 
Section 3.1).
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We used the Scopus search engine with criteria (C1)-(C4) and ran the following query: 
“TITLE-ABS-KEY (digital AND twin AND (((city OR urban) AND logistics) OR ((last- 
mile AND delivery AND supply AND chain) OR last-mile AND delivery))) “. We 
obtained a total of 35 results.

Thereafter, we proceed to a selection stage where we navigated the content of the 35 
papers and only discovered 13 to be sufficiently related to the topic of digital twin 
applications in urban logistics. We were also able to identify two more papers through 
cross-referencing, giving a total of 15 papers. Our contribution is, however, not restricted 
to summarizing previous findings. We also propose and analyze a conceptual model with 
the support of other literature that is not part of the survey itself.

The histogram in Figure 1 depicts the research trend for the papers. Since it is a new 
topic, we see that all publications are from 2020 up to May 2023 (The time during which 
this article was being completed), peaking at 2021, and declining afterwards possibly due 
to unresolved challenges identified in previous literature. In this paper, we hope to 
identify as many of these challenges and associated solutions as possible to lay the 
fundamentals for future progress in the field.

3. Urban logistics digital twin

We first provide a brief characterization of Urban Logistics in Section 3.1. Thereafter, we 
analyze DT applications in urban logistics from the literature for the factors mentioned in 
our second contribution in Section 3.2.

Figure 1. Trend of research of DT applications in Urban Logistics up to May 2023.
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3.1. Urban logistics

We first need to establish the important aspects of an urban logistics environment that 
a DT ought to operate in. Savelsbergh and Van Woensel (2016) define urban logistics as 
the efficient and effective transportation of goods in urban regions. The scope of our 
research thus reduces to transportation problems only in contrast to other logistical 
problems that deal with warehousing, staffing etc.

Anand et al. (2012) provide an ontology for urban logistics whereby important factors 
are identified. We only consider a subset of them that we find relevant for dynamic 
decision-making. These are stakeholders, Key Performance Indicators (KPI)s, resources 
and measures and decisions. We elaborate on them below.

3.1.1. Stakeholders
The government, businesses and citizens in the urban logistics supply chain are referred 
to as stakeholders. For a detailed survey on the roles of stakeholders in urban logistics, we 
refer to Lagorio et al. (2016). The authors of Lagorio et al. (2017) explain how stake-
holders have an integral function in defining the ecosystem of urban logistics network 
through their interests, interactions and decisions.

3.1.2. KPIs
As explained above, stakeholders have interests. These interests translate to objectives which 
are measured using KPIs as stated in Morana et al. (2015). KPIs could be used to guide 
optimization procedures for logistical operations as they can be used to represent objective 
functions. An example can be found in van Heeswijk et al. (2020) who use an agent-based 
simulation to verify routing schemes. The schemes are assessed by predetermined KPIs 
representing the objective functions. For an exhaustive list of some of the most popular 
KPIs for urban logistics, we refer to Griffis et al. (2007) and Gunasekaran and Kobu (2007).

3.1.3. Resources
Resources refer to all the available resources possessed by all stakeholders in the urban 
logistics network. Szmelter-Jarosz et al. (2020) explains how urban logistics resources fall 
into four categories, namely material, human, capital and information. Material resources 
include machines like trucks, IT platforms etc. Human resources refer to all the laborers 
involved in executing decisions in the urban logistics supply chain and the decision-makers 
themselves. Capital refers to the financial resources. Information refers to the intellectual 
resources such as knowledge and experience.

3.1.4. Measures
Measures represent the rules under which the resources of the digital twins operate like 
regulations imposed by policy-makers such as in Russo and Comi (2010) and Muñuzuri 
et al. (2005). Examples include restricting goods vehicle access to roads in heavily 
congested residential areas. Note that these rules are not embedded in the resources 
themselves, unlike the maximum capacity of a vehicle for example, but are rather 
circumstantial. Being practical constraints, the measures could be used to configure 
modelling constraints when setting up mathematical optimization models for urban 
operations, so that the corresponding real-life decisions remain feasible.
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3.1.5. Decisions
Activities refer to the actions made by the agents in the urban logistics supply chain who are 
also stakeholders. Specifically, the engage in activities using their resources to maximize their 
KPIs while taking into account the measures of the urban environment. The decision factor is 
the most important entity in the classification as it defines how we interact with the environ-
ment to create positive outcomes. A common challenge with decision-making is realizing and 
enforcing important decisions when no stakeholder has enough power to do so (Lagorio et al.,  
2016). Therefore, innovative methods may be needed with a holistic overview to accommo-
date stakeholders as much as possible. The DT seems like a suitable candidate to achieve that.

3.2. Digital twins

In this section, we use the papers resulting from our search queries to answer questions 
on the definition, technical anatomy, functionality and set-up of urban logistics DTs.

3.2.1. Definition
Defining a DT may differ from one application to another, making it difficult to find a cross- 
industry definition. For instance, Semeraro et al. (2021) provide a definition that is largely 
inclusive of a DT’s distinctive features, emphasizing the bidirectional control between the 
virtual model (the DT) and the physical model, and how the DT emulates the physical 
system, rather than just simulate it. Their definition however is resultant to surveying many 
applications, mainly in manufacturing, and mentions a product life cycle, which is an 
unfamiliar term in the context of urban logistics. Therefore, we can not use it.

Alternative definitions have been presented by papers dealing directly with urban 
logistics applications. Jeong et al. (2022) defines a DT as ‘an intelligent technology 
platform for synchronizing physical objects and digital objects imitating them in 
(quasi) real-time, analyzing situations according to various purposes, and optimizing 
physical objects by predicting them based on analyzed results’.

Schislyaeva and Kovalenko (2021) list numerous definitions which imply that it is 
a virtual model of a real object that simulates the physical state and the behavior of the 
object, updating itself in response to changes in the operational environment. They 
emphasize its uniqueness to one object, while noting that it can exist before its physical 
counterpart. Likewise, Marcucci et al. (2020) offer a plethora of definitions such as ‘a 
digital informational construct where a physical system is represented as a separate 
digital entity but linked to the physical system in question’.

Botn-Sanabria et al. (2022) use ‘a virtual representation of a physical object or process 
capable of collecting information from the real environment to represent, validate and 
simulate the physical twin’s present and future behavior’ while Moshood et al. (2021) 
proposes ‘a form of cyber-physical device that uses numerous IoT sensors and produces 
a high-fidelity visual image of a physical asset’.

In Section 6, we will introduce a general definition of our own in the hopes of standardiz-
ing it in urban logistics applications, taking into account the aforementioned propositions.

3.2.2. Technical anatomy
From a software perspective, there are many components in a DT. Examples include 
components such as Internet of Things (IOT), cloud-computing and Application 
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Programming Interfaces (APIs) asMoshood et al. (2021) mentions when referring to 
linking to Google Maps. The software engineering aspect, however, is of minor interest to 
us. Instead, we focus on the technical abstract design. For a detailed discussion on how 
software is integrated into the DT framework, we refer to Botn-Sanabria et al. (2022).

Belfadel et al. (2021) propose a framework into the technical anatomy of twins. We 
present an illustration based on their anatomy in Figure 2. The red arrows depict the data 
flow between hierarchies of the DT system. They explain that a typical DT model is 
composed of the following hierarchies: the top-level hierarchy which is known as the 
Physical World, the intermediate level known as the Data and Model Management 
System and the bottom level known as the Storage System.

The Physical World represents the external physical entities and sensors such as city 
operational data, IoT entities and sensors, and APIs.

This secondary level is the Data and Model Management System that is composed of 
two main systems: Data Ingestion System (DIS) and Model Management System (MMS). 
The DIS aims to integrate contextual data entities to the system and keep the DT updated 
about the status of the physical system. The MMS manages the models library which is 
a set of software applications that provide analytic tools. Most importantly, the MMS 
contains the Model Library Manager (MLM) which holds an overview of all available 

Figure 2. General technical anatomy of an urban logistics DT based on Belfadel et al. (2021).
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models in the DT, their specifications and their relationships with KPIs. The Decision 
System in the MMS is the decision-making engine of the DT. It is responsible for 
assessing scenarios in terms of how likely they may occur, examines the KPIs of the 
selected scenario and recommends the necessary interventions in the physical world 
through the DIS to achieve the predicted outcome.

The Storage System stores information on the management of model libraries and data 
along with other general storage as simulation scenarios, their configuration and related 
models etc.

In the context of Jeong et al. (2022), the digital twin is a collection of smaller digital 
twins that are synchronized together to jointly optimize the overall complex real-life 
system, such as a city, that they are twinning. The authors refer to this as DT Federation.

3.2.3. Functionalities
In Jeong et al. (2022), the DT is described not as a technology but as a shared platform 
that synchronizes several technologies. Its technologies can be mainly categorized into

● Visualization and operation technology
● Analysis technology
● Multi-dimensional modeling and simulation technology
● Connection technology
● Data and security technology
● Synchronization technology

From a computational perspective, Marcucci et al. (2020) mention that DTs in smart 
cities can describe, capture and simulate policy implications of decisions to optimize 
them with respect to a given set of objectives. Schislyaeva and Kovalenko (2021) survey 
functionalities of DTs of logistic networks on the higher-level, emphasizing how they can 
dynamically prescribe and optimize the urban physical system. They also discuss how DT 
simulation models could be used for stress tests while their predictive analytics tools can 
predict how their physical counterpart evolves. Gutierrez-Franco et al. (2021) state that 
DTs can predict possible future scenarios and evaluate so that vehicle dispatchers can 
find appropriate responses for the most likely ones.

Gutierrez-Franco et al. (2021) mention that DTs can raise alerts when exceptional situa-
tions are detected so that controllers can intervene. Anomaly detection could be pressing in 
some situations such as hazardous ones. For instance, traffic accidents are a common theme in 
the urban environments. Moshood et al. (2021) also emphasize on the importance of excep-
tion handling when physical assets exist in unsafe environments to improve safety protocols. 
Jeong et al. (2022) mention how DTs can help analyze the cause of situations due to the DT 
being able to replicate past scenarios from collected data.

DTs could also efficiently manage disruptions where the difficulty of real-time re- 
planning is better addressed by real-time data connectivity and great computational 
power, improving the responsiveness of a Logistics Service Provider (LSP) (Moshood 
et al., 2021). Parking operations as well could be carried out more efficiently through real- 
time information on available parking spaces, thereby reducing time spent on searching 
for parking, and the resulting fuel consumption and GHG emissions (Golinska Dawson 
& Sethanan, 2023). This latter case is analyzed in greater detail in Liu et al. (2021). This 
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real-time connectivity can be used to position vehicles and analyze delivery status 
through sensor technology and GPS tools (Gutierrez-Franco et al., 2021).

DTs also encompass large sets of KPIs that are generated from its diagnostics. 
Gutierrez-Franco et al. (2021) mentions that DTs can support accurate calculation of 
performance indicators of logistics operations through their scenario prediction and 
assessment mechanisms. Moshood et al. (2021) also mentions how DT sensors could 
be used to generate new data types on the supply chain flows, which as Gutierrez-Franco 
et al. (2021) suggests could create even new relevant KPIs. Schislyaeva and Kovalenko 
(2021) confirm this by saying that DTs retain data that can not be (easily) obtained from 
the physical model. Examples of such data types included vehicle interiors and working 
diagnostics. As Belfadel et al. (2021) explains”,The decisive factor is how this data is 
processed further in order to offer real added value”. where the added value is created 
with the help of dedicated KPIs.

DTs can also bestow an urban logistics supply chain with visibility using its augmented 
reality features. Moshood et al. (2021) explain that visibility depends on an organization’s 
ability to be transparent and clear about its internal and external processes of its supply chain. 
Visibility is not only important because of the enhanced interpretability it allows by visually 
depicting operations, but it also plays a collaborative part due to the involvement of multiple 
stakeholders who can be easily informed in a standardized manner of expected outcomes. 
Marcucci et al. (2020) also stresses the importance of DTs in translating complex ideas into 
more intuitive ones through visualization. Golinska Dawson and Sethanan (2023) state that 
urban visualization can be attributed to the DT’s ability to map networks.

To that end, stakeholders have to be able to exchange data with ease which a DT can 
catalyze with its data-integration infrastructure. Moshood et al. (2021) confirm the impor-
tance of this by stating that it is essential to provide as much information as possible at the 
higher-degrees of strategic decision-making. This is relevant when predicting demand for 
goods which can guide decisions regarding budgeting. Moshood et al. (2021) also highlight the 
importance of data-exchange among stakeholders to achieve visibility. The data-integration of 
DTs with the city, in turn, can encourage multi-disciplinary decision-making as different 
actors involved in the DT model or agents in the city environment can exchange data through 
the common platform (Jeong et al., 2022). This may in turn lead to more coordination and 
collaboration among stakeholders.

DTs can also automate monotonous tasks that could be subject to human error 
(Moshood et al., 2021). The advantages of automated processes are countless and can 
be explored in manifold applications. Furthermore, Schislyaeva and Kovalenko (2021) 
mention that it can troubleshoot remote equipment and perform remote maintenance as 
an extension of its automation capabilities.

The concept of DTs is normally coined with a self-learning feature where the virtual system 
consistently tries to improve its modelling of the physical system through the data it retrieves 
from it. Gutierrez-Franco et al. (2021) mention ‘a learning process based on the KPIs’, where 
the modelling parameters of the DT can be calibrated by comparing the actual outcome of the 
operations with results from the simulation and optimization models. DTs can, thus, learn 
from daily operations using machine learning models that facilitate the acquisition and 
accumulation of knowledge from the urban environment. In turn, this knowledge can be 
used to predict the outcomes of future operations when data about these operations is not 
available. Belfadel et al. (2021) give examples of this like in route recommendations.
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3.2.4. Set up & illustration
In principle, setting up a DT is a complex process. Moshood et al. (2021) state that this is 
a relatively new area of research and that its precise implementations are scarce. This goes in 
synergy with the findings of Belfadel et al. (2021), implying ‘that existing architectures are too 
generic for usage in logistics’. For smart cities, there have been several partial implementations 
such as Lyon (Belfadel et al., 2021) and cities in the Netherlands (LCB, 2022). Botn-Sanabria 
et al. (2022) also survey studies of implemented smart city DTs in Asia and Europe, of which 
some address urban logistics.

Some research initiatives such as Ivanov et al. (2020) propose the concept of a DT of 
a city from a governance perspective, with limited focus on urban logistics. Other 
initiatives like Guo and Lv (2022), although discussing urban transportation briefly, 
focus more on listing the contemporary software packages and technologies that could 
be used to implement the virtual model as opposed to the functional steps.

In line with the preceding remarks, Jeong et al. (2022) mention that a DT is 
a complicated technology where a step-by-step implementation is necessary as opposed 
to conceptual and abstract guidelines. Jeong et al. (2022) list five evolution stages for 
a DT. They are Mirroring (duplicating a physical object into a digital twin), Monitoring 
(monitoring and controlling the physical object based on the analysis of the DT), 
Modeling and Simulation (Optimizing the physical object through the simulation results 
of the digital twin), Federation (configuring federated DTs, optimizing complex physical 
objects, and inter-operating federated digital twins and complex physical objects) and 
Autonomous (autonomously recognizing and solving problems in federated digital twins 
and optimizing physical objects according to the federated digital twin solution).

Each of these stages has its own considerations. For instance, the second stage makes 
extensive use of synchronization engines to manage various sensors to ensure consis-
tency with the real world. Furthermore, the processes of the second and fourth stages 
should not be automated to prevent drastic malfunctions in the physical system making 
manual intervention necessary. The fifth stage can also only be achieved after the model 
is deemed ‘stable, reliable, and dependable for automatic action to the real world’. At that 
point, it largely resembles an ecosystem.

Jeong et al. (2022) address each of the five stages through five specific implementation 
layers or steps. These are [noitemsep] 

● Layer 1 Digital virtualization: digital representation of components making up the 
real world, such as people, things, and spaces.

● Layer 2 Digital twin synchronization: real-time mutual synchronization between 
real-world and virtual-world.

● Layer 3 Modeling and simulation: analyzing and predicting the real world by 
simulating conditional changes.

● Layer 4 Federated digital twin: inter-working for collaboration between DTs. •
● Layer 5 Intelligent digital twin services: Managing DT’s life-cycle based on intelli-

gent and autonomous technologies.

During all implementation layers, data must be continuously validated and failures must be 
detected and managed by observing DT operation and ensuring that thresholds are not 
crossed. Jeong et al. (2022) also offer a detailed classification of the technology elements 
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needed for each implementation layer so that any initiative to build a DT is acquainted with 
the hardware and software needed.

As an emphasis on the challenge associated with building DTs, Moshood et al. (2021) 
stress that ‘a completely integrated Digital Twins is a long-term approach that does not 
happen immediately’ insisting that it will be long before it can be used by industry. Much 
of the difficulty is attributed to the dense technological requirements such as Internet of 
Things Sensors, Cloud computing etc. Consequently, Moshood et al. (2021) proposes to 
start simple and focus on maintaining data accuracy while incrementally reducing the 
chance of human error.

Marcucci et al. (2020) provides an example of a collaborative initiative between policy- 
makers through Living-Labs. They suggest that Living-Labs are the most up-to-date data- 
driven methodology to tackle the management of urban logistics. The major idea is to involve 
all potential stakeholders in the urban logistics network in the design of the DT to agree on 
common objectives and functionalities. The concept is being tested in cities like Gothenburg, 
London and Rome (Marcucci et al., 2020). There, Living Labs are developed to create efficient 
and shared solutions among stakeholders. Moshood et al. (2021 also state that knowledge 
ought to be exchanged among the multiple stakeholders, a factor catalyzed by visibility. Jeong 
et al. (2022) support knowledge exchange by encouraging the usage of existing twin systems 
and associated knowledge to avoid ‘reinventing the wheel’.

Another important aspect regarding the design of a DT is the modeling one. Jeong 
et al. (2022) state that the replicated elements should be selected to make the virtual 
replication easier. They mention traffic volumes and road-maps as examples of what 
could be replicated in the urban environment. Marcucci et al. (2020) also explain how 
DTs should strive to provide a simplified version of the physical model as they should 
never replicate the physical system in every detail, since that would not make them 
models anymore that we could use to efficiently study urban environments. DT’s purpose 
as a model is to abstract the complex environment of a city in a limited number of 
variables. This compels us to be selective in what factors to include in the model. More 
variables could be included in the future as the requirements of its user base expand.

Several use cases have been identified from the literature. We mention them in 
Table 1. we found Gutierrez-Franco et al. (2021) to be the most comprehensive of 
them, listing practical steps of deploying a DT and representing its decision-making 
pipeline through a series of quantitative (AI) models. They consider an LSP conducting 
routing operations for urban distribution in a mega-city.

Their 6-step procedure starts with data collection, which is largely dictated by the avail-
ability of data and interests of LSP using the DT. In Step 2, data has to be suitably processed for 
a particular purpose such as devising diagnostic statistics that prescribe the operational 
situation and can then be fed to a mathematical model. For the latter purpose in Step 3, 
a mathematical optimization model could be set up by which decisions are recommended. 
The recommended planning then has to be verified by means of a simulation in Step 4 in 
a setting that is more representative of the urban environment. Once the solution has been 
verified, it is set to be implemented in Step 5, with KPIs on its actual performance in the city 
being generated and monitored in real-time. The realized KPIs from Step 5 are compared with 
the estimated ones in Step 4. Major deviations are corrected for in Step 6 through configured 
learning processes such as reinforcement learning in order to ensure more accurate modelling 
and better decision-making in the future.
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The design proposed in Gutierrez-Franco et al. (2021) is specific to an LSP. An urban 
logistics DT in general could be utilized by different stakeholders such as policy-makers 
in different cities. This poses new implications on the design of the urban logistics DT. 
For instance, different data types could be collected in Step 1 depending on the require-
ments of the stakeholder(s). Additionally, LSPs may deal with different problems for 
which they have different approaches that deviate from the sequential procedure in 
Gutierrez-Franco et al. (2021). To that end, different stakeholders may require different 
‘versions’ of the DT. This is adhered in Schislyaeva and Kovalenko (2021) which states 
that ‘One object can have more than one twin, with different models created for different 
users and use cases’. Therefore, it is necessary to come up with a general conceptual 
model upon which the general design of an urban logistics DT could be established to 
accommodate all these needs.

Furthermore, the different use cases in Table 1 make use of different optimization 
methods that heavily determine the design of the DT. It is not clear how the design might 
change with an alternative optimization method. Therefore, our conceptual model in 
Section 4 addresses the general integration of AI methods.

4. Conceptual model

In this section, we present our own conceptual model of the urban logistics DT in the 
form of a knowledge graph and explain how different AI models, namely machine 
learning and optimization, can be integrated in it.

4.1. Knowledge base

Using the characterization in Section 3.1 and an overview of mathematical models that 
are generally embedded in DTs – such as in Gutierrez-Franco et al. (2021) - we are able to 
devise an ontology of an urban logistics DT. This ontology is similar to the one used in 
Anand et al. (2012). To specify the high-level entities, we use a mix of the five key factors 
in Section 3.1 and define several others based on literature. Specifically, we have the 
following entities: stakeholders, resources, KPIs, measures, decisions, data, statistical 
analysis tools, mathematical optimization, simulation and machine learning.

We deem the Data entity to be self-explanatory as it represents any data collected by the DT 
through sensors for example, so we do not expand it further here. Specifically, the latter four 
entities which represent mathematical models that could be categorized as AI tools have often 
been used to solve urban logistics problems. Statistical analysis of data has been used in many 

Table 1. Use cases of Urban Logistics DT in literature.
Paper Application

Gutierrez-Franco et al. (2021) Urban distribution by a retailer in a developing mega-city
Zdolsek Draksler et al. (2023) cross-border postal-logistics
Shen et al. (2022) Tobacco Supply Chain
Vallejo et al. (2021) Urban food supply chain for carbon food-print reduction
Miao and Lan (2021) Image processing for intelligent logistics distribution management
Liu et al. (2021) Freight Parking Management
Ghandar et al. (2021) Urban agriculture and distribution.
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urban logistics studies such as Zou et al. (2020) and Alho and E Silva (2015), mathematical 
optimization in Montoya et al. (2017) and Dabia et al. (2017), simulation modelling in Jlassi 
et al. (2018) and Karakikes et al. (2018) and machine learning in El Ouadi et al. (2020) and 
Giuffrida et al. (2022), to give some examples.

Referring to the technical architecture in Section 3.2.2, the four AI entities would be 
embedded in the MLM. The MLM is an integral component of DTs as it contains its 
analytic tools. In turn, human controllers should consistently strive to improve the 
embedded models so as to equip the DT sufficiently to analyze very complex processes 
and add value through optimization. In order to arrive at a compact design of the 
ontology, we merge these four into a single high-level entity which we refer to as the 
AI component. This is because their relationships with other entities in the ontology and 
among each other are identical.

At the high-level, our ontology is given in Figure 3. The feedback-loop constituted by 
the bidirectional data exchange between the DT and the physical environment is given by 
the red arrows. In particular, data is collected from resources and used as input to the AI 
component. The AI component processes the data to support decision-making through 
optimization. Once decisions have been implemented, KPIs are generated which are 
collected again as data to evaluate the decisions and learn from them.

At a secondary level, the ontology of the AI component itself is given in Figure 4. The 
four components interact regularly with each other to support their functionalities. The 
output of one component can be used as the input to another. Figure 4 can also be viewed 
as an arbitrary pipeline of mathematical models.

The ontology prescribed in Figure 4 provides a fundamental design for pipelines using 
the AI component. Since all relations among all entities in Figure 4 are bidirectional, any 
possible ordering of the entities in a pipeline is allowed. Other pipelines may omit some 
of the entities if they do not use them.In the following section, we provide a model 
specification of DTs which we will use in Section 5 when showcasing the integration of 
DDO models.

Figure 3. Our proposed high-level urban logistics DT ontology.
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4.2. DT model specification

Let PðtÞ be a high-dimensional vector representing the parameters of the underlying 
quantitative models of the DT at continuous time t. In that case, the model can be 
completely prescribed by fPðtÞ; t > 0g at any arbitrary time t. Furthermore, let Δ be some 
time interval after t so that DðΔÞ represents the data collected from the physical system in 
that interval. The virtual model can be defined as follows: 

Pðt þ ΔÞ ¼ f ðDðΔÞ; PðtÞÞ (1) 

where f ð:Þ is a concatenation of vectors of functions responsible for updating the virtual 
model’s parameters given some data intake and previous parameter estimates. That is to 
say that the current status of a DT depends on the previous status and recently collected 
data through its learning algorithms. The frequency by which data updates the virtual 
model is determined by the human controllers. It is crucial to have a high data-updating 
frequency while taking latency into account (Marcucci et al., 2020).

We now provide a brief overview of previous research on how tools in the AI component 
complement each other in decision-making with a focus on Vehicle Routing Problem (VRP). 
Our focus on VRP stems from the academic and industrial interest surrounding it. Thereafter, 
we provide an illustration for solving a VRP variant. We explain how a pipeline could be 
constructed from an algorithmic set-up, how it integrates into the framework of the DT and 
how the DT uses its capabilities to solve the problem.

5. Technical illustration

5.1. Data-driven optimization in VRP

Among the AI components, we focus mostly on Machine Learning and Mathematical 
Optimization. They jointly comprise the concepts of DDO which we regard as the 
primary computing asset of DTs. DDO refers to optimization procedures that apply 
learning algorithms to data to improve results. This could be data on parameters of the 
problem such as travel times in cities or solution data such as routing decisions. For 
simulation, there is already ample literature on its integration in the DT framework 
(Boschert & Rosen, 2016) and methods employed in VRP (Amaran et al., 2016).

Figure 4. Our proposed ontology for the AI component in Figure 3.
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Papers like Lombardi and Milano (2018) and Bengio et al. (2021) survey the general 
integration of machine learning into combinatorial optimization for different learning 
mechanisms. Mazyavkina et al. (2021) survey a more detailed application of reinforce-
ment learning to combinatorial optimization. Khalil et al. (2017) extend on this by 
providing applications in graph related problems and along with a framework from 
learning common heuristics for these problem.

Historically, the application of machine-learning to optimize VRP has been rewarding. Bai 
et al. (2021) provide a comprehensive survey of machine learning applications in solving VRPs 
including stochastic variants. They consider the usage of machine learning as both, 
a modelling tool and an optimization one. More specifically, Niu et al. (2021) and Niu et al. 
(2022) use hypothesis generation to learn a genetic algorithm to solve a multi-objective VRP 
with uncertain demand. For the case with stochastic customers, Joe and Lau (2020) apply 
reinforcement learning to approximate the value-function of actions from a genetic algorithm.

Other applications of machine learning in solving deterministic VRP can be found in 
Morabit et al. (2021) who use supervised learning for column generation to solve a VRP with 
time windows. Furian et al. (2021) combine supervised learning with branch-and-price to 
predict the value of binary decision variables in the optimal solution, and the branching scores 
of fractional variables for capacitated VRP. Cooray and Rupasinghe (2017) consider 
a different heuristic-based approach where unsupervised learning is used to tune the para-
meters of a genetic algorithm for energy minimizing VRP.

Reinforcement learning, as a method, has been popular in the literature as well. da 
Costa et al. (2021) provide a general methodology for reinforcement learning of a meta- 
heuristic for standard VRP with actor-critic networks. Nazari et al. (2018) employ 
reinforcement learning to devise a parameterized stochastic policy with an actor-critic 
network for optimizing capacitated VRP. They also explain that their approach could be 
extended to other variants. Similarly, Hottung and Tierney (2019) learn a stochastic 
policy by reinforcement learning for capacitated VRP and split delivery VRP through an 
actor-critic model. However, they employ a novel concept where the training targets are 
defined by the objective of an infeasible solution so as to bridge the gap with the (best) 
feasible solution. J. Zhao et al. (2020) also use reinforcement learning with an actor-critic 
network to devise a stochastic policy whose output can be combined with a local search 
procedure to optimize standard VRP (with time windows).

The aforementioned papers compose a small sample of the numerous literature on 
applying machine learning to solve VRP. Surely enough, there are many other publica-
tions that address DDO in VRP that would be of great use to a DT. A summary of the 
papers cited above is given in Table 2.

5.2. Example application

Given the approaches prescribed above, we can use the knowledge graph to construct 
a design for an urban logistics DT to be deployed by an LSP in planning their daily 
operations. For a start, we need to define the entities. This is done in Table 3.

The next part is to define the AI component. We can easily construct a pipeline to 
solve a VRP variant. We consider a standard VRP with capacity constraints and time- 
windows similar to the one solved by many retailers in industry for planning routing 
operations. We refer to this problem as CVRPTW1. It is characterized by N customer 
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locations with properties such as time windows and demands CN . Furthermore, let T
represent the travel time data repository of the DT where each observation tij corre-
sponds to a travel time between locations i and j. The optimization problem could be 
simply prescribed by: 

fminμ2MΩðμÞg (2) 

where 

ΩðμÞ ¼ fmin cðxÞjAðxÞ � b; x 2 SðμÞg (3) 

with μ being a vector of parameters of local search heuristic – such as k-exchange moves – 
in subspace M and SðμÞ being the search space created by calibrating the heuristic with 
parameters μ. cðxÞ is an objective function expressed by T and routing decisions x and 
AðxÞ being the constraint matrix on routing decisions x defined by CN .

Observe that (T , CNÞ 2 DðΔÞ represent city operational data that updates the DT on 
the current status of the customers and transit within the city. The technical process by 
which the data is absorbed by the DT can be explored in papers like Xu et al. (2022), 
Jeong et al. (2022) and Z. Zhao et al. (2022). Analogously, μ 2 PðtÞ since it is among the 
set of parameters used by the DT model. This presents a rather important feature of 
optimization models embedded in DTs in the sense that the parameters defining their 
search procedure are updated according to collected data and are not static in nature. We 
explain how this is done in the following section.

Table 2. Sample of the DDO applications in VRP from literature. We also mention the VRP variants they 
deals with and the associated learning and optimization techniques.

Paper Problem Methods

James et al. (2019) green logistic system online 
routing

reinforcement learning, combinatorial 
optimization

Niu et al. (2021) multi-objective stochastic VRP hypothesis generation, genetic algorithm
Niu et al. (2022) multi-objective stochastic VRP hypothesis generation, genetic algorithm
Joe and Lau (2020) stochastic VRP reinforcement learning, genetic algorithm
Morabit et al. (2021) VRP with time windows supervised learning, branch-and-price
Furian et al. (2021) capacitated VRP supervised learning, branch-and-price
Cooray and Rupasinghe 

(2017)
energy minimizing VRP unsupervised learning, genetic algorithm

da Costa et al. (2021) standard VRP reinforcement learning, local search
Nazari et al. (2018) capacitated VRP reinforcement learning, combinatorial 

optimization
Hottung and Tierney (2019) split-delivery/capacitated VRP reinforcement learning, local search
J. Zhao et al. (2020) standard VRP/with time windows reinforcement learning, local search

Table 3. Entity specification for an urban logistics DT for an LSP carrying out urban 
distribution. The AI component is explained below.

Entity Instances

Stakeholders LSPs, customers, truck operators
Resources Trucks
Measures driving times, time windows
KPIs total driving time, number of vehicles used, average number of stops per vehicle
Decisions Routing order among customers; order cancellation
Data customer locations, customer demands, traffic data etc.
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Let the pseudo-code for solving CRVPTW1 be given by Algorithm 4. It is worth 
mentioning that Algorithm 1 and the associated pipeline are high-level examples whose 
purpose is simply illustrative. Algorithm 1 takes T and CN as input and outputs a set of 
routes R� representing a feasible planning. It makes use of a heuristic where 
a reinforcement learning (RL) agent constantly interacts with a local search procedure 
such as in da Costa et al. (2021). Such a heuristic is an instance of a DDO method. The 
purpose of the RL agent is to approximate the value-function of actions and assign higher 
probabilities to more rewarding actions. The actions concern perturbations to the 
solution defined by the local search procedure such as k-exchange moves.

With algorithm 1, the pipeline in Figure 5 can be constructed. The pipeline illustrates 
the order in which entities from the AI component in Figure 4 interact with one another 
to output a solution x ¼ R�.

5.3. DDO integration in DTs

As mentioned, the major challenge entails integrating the complex optimization models 
developed in the literature into existing architectures. Unfortunately, the architectures 
provided in the use cases above do not extend naturally to other applications due to the 
complex structure of DTs and the novel optimization models in concern like the 
approach above based on da Costa et al. (2021).

Before we proceed, we propose an important distinction in DDO. We refer to DDO 
applications where the collected data concerns the environment of the problem such as 
learning model parameters as environment-based. On the other hand, applications 
where the data concerns solutions data such as learning solution patterns are called 
solution-based.

environment-based applications are generally simpler as they often make use of                 

empirical data and static learning mechanisms like supervised learning applied. They are 
guided by some ground truth which represents the actual realized observations from the 
physical system. In the context of CVRPTW1, having accurate estimates of the travel 
times when planning occurs is an example.

Algorithm 1 Pseudo-code to solve CVRPTW1.

1: Input: N , CN , T .
2: Let R ¼ ;:

3: Construct initial solution for CVRPTW1.
4: while termination criterion for optimization is not met do
5: Use reinforcement learning agent to evaluate actions.

6: Use actions to search for candidate solutions locally
7: Generate candidate solutions R and add them to R.

8: end while
9: for solution R in R do
10: verify R using simulation
11: if simulation objective of R is better than R� then
12: R� ¼ R:

13: end if
14: end for
15: return R�
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Works like Wang et al. (2020) deal specifically with environment-based applica-
tions in the DT framework. They make use of surrogate models to model the 
complex physics behind air-conditioning in a data center. Although their applica-
tion is quite different from urban logistics, their methods can work quite well for 
other applications given the consistency in the input-to-output approaches of 
supervised learning. The methodology is also quiet suitable for DTs given their 
reliance on surrogate models (Bárkányi et al., 2021) and storage capacity (Belfadel 
et al., 2021).

The situation with solution-based applications is a little more complex. Returning to 
our pipeline in Figure 5, we see that a reinforcement-learning agent needs to interact with 
the optimization environment to learn favorable routing decisions based on previous 
solutions. Interaction with the physical urban environment is not possible. To counter 
this issue, Xu et al. (2022) propose a method where the agent interacts with the problem 
environment offline in a simulator without disturbing the physical system. Their method 
for crane deployment can work in any application provided that the DT is capable of 
simulating the problem with sufficient accuracy.

However, in the absence of live interaction with the environment, the rewards (KPIs) 
could significantly deviate from the ones used in the simulation. In such a case, KPI data 
can be collected after the operations have been implemented and fed back into the 
reinforcement learning agent for re-training. Figure 6 visually depicts the data flow in 
such a procedure. The estimated rewards R̂ can be used when defining the transition 
tuples in the initial phase of training before the actual rewards R are collected after the 
decisions have been implemented for retraining. We understand that changing the 
rewards associated with the same actions and states might result in complications in 
training. Lu et al. (2018) investigate methods dedicated to learning under structural 
changes in relationships among variables which can be of profound advantage in this 
case.

This reinforcement-learning framework presented above is not to be mistaken 
with offline learning concepts introduced in works like Levine et al. (2020) and 
Agarwal et al. (2020) where transition data is generated from external sources and 

Figure 5. Example pipeline for solving CVRPTW1.
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not through the agent’s interaction with the environment. Such methods can be of 
interest if we decide to make use of expert’s past decisions in training the 
reinforcement learning agent.

6. Results and discussion

6.1. Main findings

The impact of our findings are useful in many ways. For the DT, we have enough sources 
to formulate a precise definition for urban logistics:

An intelligent technology platform where a high-fidelity virtual replica of a physical 
system is emulated and updated in real-time in response to changes in the physical 
system it is synchronized with. The virtual model collects data from the physical one and 
analyzes it to prescribe interference mechanisms in the physical system for optimization 
purposes.

We believe that this definition is sufficiently inclusive of all the aspects from 
the definitions surveyed above. We identified a clear technical anatomy from 
Belfadel et al. (2021) and an implementation procedure from Jeong et al. (2022), 
along with a long listing of its potential numerous functionalities that could vary 
from one user to another. We also provided clear use cases to showcase practical 
implementations through works like Gutierrez-Franco et al. (2021). The use cases, 
however, do not justify the major design steps in a tractable order, and their 
integration of quantitative methods is rather case-specific. This makes it challen-
ging to replicate the DT in another application or even with just another quanti-
tative method like DDO.

Our conceptual model, on the other hand, forms the design framework for an urban 
logistics DT. Furthermore, we explained how DDO methods can be integrated in the DT 
through a reference to an approach and its learning component, something a lot of the 
literature neglects. We feel that the major problem with most literature is the assumption 
that expert knowledge on DTs is so prevalent to the point where design justifications are 
unnecessary. This is not true given how new the field is and how few the actual 
implementations are (if any).

Figure 6. Data flow in reinforcement learning in a DT. Transition data contains current and succeeding 
states St and Stþ1, actions A, estimated and actual rewards R̂ and R.
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To the best of our knowledge, there is no single work that covers all these aspects. We have 
attached a rather large overview of sources that deal with the integral topics in the subject area, 
even for topics that we do not discuss extensively such as the software engineering aspect. 
Moreover, we considered sources from different applications whose methodologies could be 
of great benefit for urban logistics applications, combining knowledge from multiple fields. 
We are convinced that our guidelines are enough for any entity with reasonable availability of 
resources to start building and deploying their own DT in urban logistics.

Despite all these findings, we can safely conclude their assertiveness only by conduct-
ing more detailed (numerical) experiments where they are properly verified. We cur-
rently lack the data and infrastructure to do that, not to mention that such a validation 
process, probably requires the set-up of a full use case, which is a much more detailed and 
demanding topic whose scope differs from our research questions.

6.2. Research opportunities and challenges

In analogy with the points discussed above, there are many possible benefits and challenges 
related to DTs. The most obvious benefit is its provision of a methodology to optimize the 
logistic network in a city. This would be reflected in reduced pollution and congestion 
volumes, more efficient logistics operations and increased consumer satisfaction through 
higher service levels. However, there are many costs that ought to be borne beforehand.

For a start, Botn-Sanabria et al. (2022) cite data security concerns and communication 
network-related obstacles. Additionally, the set-up costs of the technology-intensive DT are 
not negligible. Schislyaeva and Kovalenko (2021) also explain that the cost-sensitivity of 
logistic operations may explain the reluctance of some companies to invest in testing DTs. 
Many LSPs may be unwilling to enable the DT to control their resources due to cost and safety 
concerns. The absence of a link by which the virtual model can control the physical model for 
testing purposes poses a serious challenge to the credibility of current studies on DTs.

To counter this, some platforms already provide basic implementations based on expert 
knowledge and collaboration with industry. The Atlas Leefbare Stad DT by Logistics 
Community Brabant LCB (2022), which is a virtual replica of cities in the Netherlands, is 
one such example. It models relevant variables as dictated by the requirements of its user base 
of academic researchers and LSPs. In Atlas, however, the transfer of data is unidirectional – 
from the physical to the virtual system only, in contrast to definition from Section 3.2.1. 
Marcucci et al. (2020) refer to such a virtual model as a Digital Shadow (DS).

While a fully comprehensive study on DTs could not be met with a DS, a partial study is still 
feasible. Marcucci et al. (2020) mention that ‘the primary function a DT addresses is 
descriptive in nature’. Examples of its descriptive functions include anomaly detection, 
warnings, predictive tasks and even recommending optimization-derived solutions without 
implementing them. By comparing its descriptive output with actual outcomes as interpreted 
by expert knowledge, experts can form opinions about the usefulness of the virtual model.

There are other challenges associated with building a DT. Marcucci et al. (2020) 
mentions ‘that technological changes and strong attention towards global warming’ 
may require more ‘radical changes in technology and policy’ than the incremental 
approach guiding the design and development of DTs. This places pressure on the 
benchmarks the DT is expected to meet as the gains of a fully functional DT may be 
too slow to realize in the short-term.
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Furthermore, Marcucci et al. (2020) explain that relationships between variables is 
expected to change over the course of time due to external factors. The DT model, 
therefore, compels constant updates so that changes in relationships and knowledge are 
incorporated on time, otherwise its added value may be questionable.

The fruit of overcoming these challenges is a method by which strategic planning can 
be coordinated among different stakeholders. Botn-Sanabria et al. (2022) mention that 
shippers can plan more precisely in selecting the different modes of transportation at the 
different gateways connecting the supply chain. This collaboration among stakeholders 
by which inter-operable, low-cost, reliable and secure data exchange can implement the 
DT without requiring significant investments in IT infrastructure. In turn, Botn-Sanabria 
et al. (2022) stress the necessity of being able to respond to immediate and diverse 
circumstances and to cope with the demands of the modern e-commerce sector that 
requires increased fragmentation, complexity and integration level of DTs.

7. Conclusion

Returning to our contributions, we managed to define the DT model for urban logistics, 
anatomize it, list its functional requirements and present a technical implementation 
procedure. For the general design, we added a conceptual model based on the identifica-
tion of imperative features for dynamic decision-making in urban logistics and relevant 
quantitative models for urban logistics problems. Through our model, one can take a step 
back to obtain a higher-level view on the design process whereby the implementation and 
operation are less challenging.

We illustrated the usage of our model in a case for solving VRP and explained how the 
associated DDO methods with different learning paradigms (supervised vs reinforce-
ment) can be integrated in the DT. That is to lay the foundations for developers of DDO 
methods to integrate their knowledge in DTs which should help increase its added value.

We were not only concerned by the past and present status of the research fields, but 
also raised several issues that ought to be addressed by future research if DTs are expected 
to be a commonly trusted decision-support tool. This comes with opportunities that 
future research could also fulfill to bring about the added value of DTs.

That said, we aspire that future research expands on the knowledge we provided here, 
and specifically for future use cases to make use of our conceptual model. We urge 
researchers to make their knowledge more accessible to catalyze growth in the field.
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