

Background

- Purpose of project is to aid our industrial partners with better planning of their urban supply chains.
 - Using computing power of smart technologies and AI.
 - To make cities more sustainable.
- The idea is to propose and evaluate an intelligent control system (the Digital Twin) to showcase its added value in problem-solving.
 - We can justify its development (costs) in the future.
 - We already researched its design, capabilities, set-up and integration of AI methods.

Problem

- Logistics Service Providers commonly solve the Vehicle Routing Problem to decide on the routing order of their customers on a daily basis.
 - NP-hard: In Mathematics, difficult to solve **exactly** in reasonable time with known algorithms
- Can we leverage Digital Twins to better solve VRP?
 How can Al methods solve VRP?

 - How to integrate AI methods in Digital Twin?

PS: there is a million-dollar prize for a mathematical proof showing that whether (or not) it is possible to solve NP-hard problems **exactly** in reasonable time

Classical Method

- 1. Identify a set of promising routes
- 2. Select a final set of routes from promising routes.
- Second part is easy and boils down to a simple selection problem.
- First part is where the challenge is.
 - Not so intuitive. How promising a route is depends on what other alternative routes are available.
 - A route ought to respect operational constraints associated with truck capacity, customer and depot time windows and possibly dynamic replanning

Identification of promising routes

- Mathematically, the problem is referred to as Elementary Shortest Path Problem with Resource Constraints and Time Windows (ESPRCTW):
 - Find a route starting and ending at the depot
 - Maximizes the overall usefulness by visiting customers most needed to be visited.
 - Take into account operational constraints.
- ESPRCTW is NP-hard.
 - Explaining NP-hardness of VRP.
 - How can we solve it faster? Machine learning is a nominee.

Machine Learning for ESPRCTW

- Consider an extremely intelligent truck operator who must iteratively decide on the next customer to visit after each customer visit.
 - Can accurately compute the associated usefulness and inefficiency/wastage of visiting a customer next.
 - Keeping track of operational constraints.
- In machine learning terminology, this is a reinforcement-learning agent.
 - Produces an action, that transitions the environment to a new state and receives a reward accordingly.

- Agent: route planner.
- Environment: network of customers to be served.
- Action: customer to visit next.
- State: info. on partially constructed route, remaining resources and customers yet to be feasibly served.
- Reward: gain of serving a customer.

Expected Outcome

- A model has been proposed and implemented.
 - Produces feasible routes.
 - Computational results are still pending
- Hopefully, the reinforcement learning agent will be able to solve ESPRCTW more efficiently.
 - Generate routes faster.
 - Solve VRP faster.

Thank You!!!