Improve material availability by implementing age based spare parts forecasting – ASML
Overview
Company Name / Department | ASML |
Contact Person |
Roy van Hugten |
Location | Veldhoven, Netherlands |
Study programme(s) |
Supply Chain Management |
Community | ESCF |
Start Date | Around February 2020 |
Housing arranged by company | No |
Compensation |
500 Eur per month |
Company Description
ASML develops, produces, markets, sells, and services advanced semiconductor equipment systems consisting of lithography related systems for memory and logic chipmakers. It also offers metrology and inspection systems, including optical metrology solutions to measure the quality of patterns on the wafers; and e-beam solutions to locate and analyze individual chip defects. In addition, the company provides computational lithography and software solutions to create applications that enhance the setup of the lithography system; and mature products and services that refurbish used lithography equipment and offers associated services.
Project Description
The Service Inventory Management department at ASML is responsible for the planning of spare parts and service tools in order to meet service level agreements with ASML’s customers. The forecast of spare parts demand is an important driver for these planning activities. The current method used for forecasting does not take into account the age of the part or the machine.
ASML thinks that using this information can lead to a higher forecast accuracy and thereby improve material availability for our customers.
Goals of the Project
A method to improve forecast accuracy by using part/machine age data, that fits in the current framework for forecasting and planning, making use of the available data within ASML.
Deliverables
- Literature study to determine to determine which methods can be used to include part/machine age in spare parts forecasting
- Conduct interviews within ASML to determine which methods are already considered and which business data is available to support these methods
- A proposal for a method
- Model and analysis to evaluate the effectiveness of the proposed method(s)
- Guidelines for implementation of the method
Essential Student Knowledge
Strong capital goods background with passion for data analytics and programming
More information: escf@tue.nl